Lexical Analysis - Part 2

Y.N. Srikant
Department of Computer Science and Automation
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Principles of Compiler Design
Outline of the Lecture

- What is lexical analysis? (covered in part 1)
- Why should LA be separated from syntax analysis? (covered in part 1)
- Tokens, patterns, and lexemes (covered in part 1)
- Difficulties in lexical analysis (covered in part 1)
- Recognition of tokens - finite automata and transition diagrams
- Specification of tokens - regular expressions and regular definitions
- LEX - A Lexical Analyzer Generator
Nondeterministic FSA

- NFAs are FSA which allow 0, 1, or more transitions from a state on a given input symbol.
- An NFA is a 5-tuple as before, but the transition function δ is different.
- $\delta(q, a) = \text{the set of all states } p, \text{ such that there is a transition labelled } a \text{ from } q \text{ to } p$.
- $\delta : Q \times \Sigma \rightarrow 2^Q$.
- A string is accepted by an NFA if there exists a sequence of transitions corresponding to the string, that leads from the start state to some final state.
- Every NFA can be converted to an equivalent deterministic FA (DFA), that accepts the same language as the NFA.
Nondeterministic FSA Example - 1

L = \{ x \mid x \text{ contains two consecutive 0's or two consecutive 1's} \}

<table>
<thead>
<tr>
<th>state</th>
<th>symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(q_0)</td>
<td>{q_0, q_3}</td>
</tr>
<tr>
<td>(q_1)</td>
<td>(\phi)</td>
</tr>
<tr>
<td>(q_2)</td>
<td>{q_2}</td>
</tr>
<tr>
<td>(q_3)</td>
<td>{q_4}</td>
</tr>
<tr>
<td>(q_4)</td>
<td>{q_4}</td>
</tr>
</tbody>
</table>
An NFA and an Equivalent DFA

NFA

DFA

$p0=\{q0\}$
$p1=\{q0, q1\}$
$p2=\{q1, q2\}$
$p3=\emptyset$
Example of NFA to DFA conversion

- The start state of the DFA would correspond to the set \(\{ q_0 \} \) and will be represented by \([q_0]\)
- Starting from \(\delta([q_0], a) \), the new states of the DFA are constructed on demand
- Each subset of NFA states is a possible DFA state
- All the states of the DFA containing some final state as a member would be final states of the DFA
- For the NFA presented before (whose equivalent DFA was also presented)
 - \(\delta[q_0], a) = [q_0, q_1], \quad \delta([q_0], b) = \phi \)
 - \(\delta([q_0, q_1], a) = [q_0, q_1], \quad \delta([q_0, q_1], b) = [q_1, q_2] \)
 - \(\delta(\phi, a) = \phi, \quad \delta(\phi, b) = \phi \)
 - \(\delta([q_1, q_2], a) = \phi, \quad \delta([q_1, q_2], b) = [q_1, q_2] \)
 - \([q_1, q_2]\) is the final state
- In the worst case, the converted DFA may have \(2^n \) states, where \(n \) is the no. of states of the NFA
ϵ-NFA is equivalent to NFA in power
Let Σ be an alphabet. The REs over Σ and the languages they denote (or generate) are defined as below:

1. ϕ is an RE. $L(\phi) = \phi$
2. ϵ is an RE. $L(\epsilon) = \{\epsilon\}$
3. For each $a \in \Sigma$, a is an RE. $L(a) = \{a\}$
4. If r and s are REs denoting the languages R and S, respectively
 - (rs) is an RE, $L(r s) = R \cdot S = \{xy \mid x \in R \land y \in S\}$
 - $(r + s)$ is an RE, $L(r + s) = R \cup S$
 - (r^*) is an RE, $L(r^*) = R^* = \bigcup_{i=0}^{\infty} R^i$

$(L^*$ is called the Kleene closure or closure of L)
Examples of Regular Expressions

1. \(L = \) set of all strings of 0’s and 1’s
 \[r = (0 + 1)^* \]
 - How to generate the string 101?
 \[(0 + 1)^* \Rightarrow (0 + 1)(0 + 1)(0 + 1)\epsilon \Rightarrow 101 \]

2. \(L = \) set of all strings of 0’s and 1’s, with at least two consecutive 0’s
 \[r = (0 + 1)^*00(0 + 1)^* \]

3. \(L = \) \(\{ w \in \{0, 1\}^* \mid w \) has two or three occurrences of 1, the first and second of which are not consecutive\}
 \[r = 0^*10^*010^*(10^* + \epsilon) \]

4. \(r = (1 + 10)^* \)
 \(L = \) set of all strings of 0’s and 1’s, beginning with 1 and not having two consecutive 0’s

5. \(r = (0 + 1)^*011 \)
 \(L = \) set of all strings of 0’s and 1’s ending in 011
Examples of Regular Expressions

6 \(r = c^* (a + bc^*)^* \)
 \(L = \) set of all strings over \{a,b,c\} that do not have the substring \(ac \)

7 \(L = \{ w \mid w \in \{a, b\}^* \land w \) ends with \(a \} \)
 \(r = (a + b)^* a \)

8 \(L = \{ \text{if, then, else, while, do, begin, end} \} \)
 \(r = if + then + else + while + do + begin + end \)
A regular definition is a sequence of "equations" of the form
\[d_1 = r_1; \ d_2 = r_2; \ldots; \ d_n = r_n, \] where each \(d_i \) is a distinct name, and each \(r_i \) is a regular expression over the symbols \(\Sigma \cup \{ d_1, d_2, \ldots, d_{i-1} \} \)

1. identifiers and integers
 \[\text{letter} = a + b + c + d + e; \ \text{digit} = 0 + 1 + 2 + 3 + 4; \]
 \[\text{identifier} = \text{letter}(\text{letter} + \text{digit})^*; \ \text{number} = \text{digit} \ \text{digit}^* \]

2. unsigned numbers
 \[\text{digit} = 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9; \]
 \[\text{digits} = \text{digit} \ \text{digit}^*; \]
 \[\text{optional_fraction} = \text{digits} + \epsilon; \]
 \[\text{optional_exponent} = (E(\{+|-|\epsilon\})\text{digits}) + \epsilon \]
 \[\text{unsigned_number} = \]
 \[\text{digits} \ \text{optional_fraction} \ \text{optional_exponent} \]
Equivalence of REs and FSA

- Let r be an RE. Then there exists an NFA with ϵ-transitions that accepts $L(r)$. The proof is by construction.
- If L is accepted by a DFA, then L is generated by an RE. The proof is tedious.
Construction of FSA from RE - $r = \phi, \epsilon, \text{or } a$

- $r = \phi$: Start state q_0 and final state q_f.
- $r = \epsilon$: Start state q_0 and final state q_f.
- $r = a$: Start state q_0, transition on a to q_f.

FSA for the RE $r = r_1 + r_2$

- **q0** is the new initial state
- **f0** is the new final state
- **q1**, **q2** are no more initial states
- **f1**, **f2** are no more final states
FSA for $r = r_1 \ r_2$

q1 is the new start state
f1 is no more a final state
q2 is no more a start state
f2 is the new final state
FSA for \(r = r_1^* \)

q0 is the new start state

f0 is the new final state

q1 is no more a start state

f1 is no more a final state
NFA Construction for $r = (a+b)^*c$
Transition diagrams are generalized DFAs with the following differences:

- Edges may be labelled by a symbol, a set of symbols, or a regular definition.
- Some accepting states may be indicated as *retracting states*, indicating that the lexeme does not include the symbol that brought us to the accepting state.
- Each accepting state has an action attached to it, which is executed when that state is reached. Typically, such an action returns a token and its attribute value.

Transition diagrams are not meant for machine translation but only for manual translation.
Transition Diagram for Identifiers and Reserved Words

\[\text{letter} = [a-zA-Z_] \]
\[\text{Identifier} = \text{letter} (\text{letter} \mid \text{digit})^* \]

\[\text{Return} (\text{get_token_code}(), \text{name}) \]

- ‘*’ indicates retraction state
- \(\text{get_token_code}() \) searches a table to check if the name is a reserved word and returns its integer code, if so
- Otherwise, it returns the integer code of \text{IDENTIFIER} token, with name containing the string of characters forming the token (name is not relevant for reserved words)
Transition Diagrams for Hex and Oct Constants

hex Const = 0 (x | X) dhex^+ (qualifier | ε)
oct Const = 0 doct^+ (qualifier | ε)
qualifier = u | U | I | L
dhex = [0-9A-F]
doct = [0-7]
Transition Diagrams for Integer Constants

\[
\text{int_const} = \text{digit}^+ (\text{qualifier} \mid \varepsilon) \\
\text{qualifier} = u \mid U \mid l \mid L \\
\text{digit} = [0-9]
\]

Diagram:
- Start at node 12.
- Transition on digit to node 13.
- Transition on \(u \cup U \cup l \cup L\) to node 15.
- Transition on digit from node 13 back to itself.
- Transition on other to node 14.
- Node 14: * return(INT_CONST, value)
- Node 15: return(INT_CONST, value)
Transition Diagrams for Real Constants

real_const = (digit + exponent (qualifier | ε)) |
 (digit* "." digit + (exponent | ε) (qualifier | ε)) |
 (digit + "." digit* (exponent | ε) (qualifier | ε))

exponent = (E|e)(+|-|ε) digit +

qualifier = f | F | l | L

digit = [0-9]
Transition Diagrams for a few Operators

- For the operator '>', it transitions to another state if '>' is found, or to the final state if it's not an operator. The final state returns `(ASSIGN_OP, RIGHT_SHIFT_ASSIGN)`.
- For the operator '=', it transitions to another state if '=' is found, or to the final state if it's not an operator. The final state returns `(ASSIGN_OP, RIGHT_SHIFT)`.
- For the operator '+', it transitions to another state if '+' is found, or to the final state if it's not an operator. The final state returns `(ASSIGN_OP, ADD_ASSIGN)`.
- For the operator 'INC', it transitions to another state if 'INC' is found, or to the final state if it's not an operator. The final state returns `(ASSIGN_OP, INC)`.
- For other characters, it returns the corresponding operator code.
TOKEN gettoken() {
 TOKEN mytoken; char c;
 while(1) { switch (state) {
 /* recognize reserved words and identifiers */
 case 0: c = nextchar(); if (letter(c))
 state = 1; else state = fail(); break;
 case 1: c = nextchar();
 if (letter(c) || digit(c))
 state = 1; else state = 2; break;
 case 2: retract(1);
 mytoken.token = search_token();
 if (mytoken.token == IDENTIFIER)
 mytoken.value = get_id_string();
 return(mytoken);
 }
}
Transition Diagram for Identifiers and Reserved Words

\[
\text{letter} = [a-zA-Z_] \\
\text{Identifier} = \text{letter} \ (\text{letter} | \text{digit})^*
\]

- ***' indicates retraction state**
- \text{get_token_code()} searches a table to check if the name is a reserved word and returns its integer code, if so
- Otherwise, it returns the integer code of IDENTIFIER token, with name containing the string of characters forming the token (name is not relevant for reserved words)

Return \(\text{get_token_code()}, \text{name}\)
/* recognize hexa and octal constants */

case 3: c = nextchar();
 if (c == '0') state = 4; break;
 else state = failure();

case 4: c = nextchar();
 if ((c == 'x') || (c == 'X'))
 state = 5;
 else if (digitoct(c))
 state = 9;
 else state = failure();
 break;

case 5: c = nextchar();
 if (digithex(c))
 state = 6;
 else state = failure();
 break;
Transition Diagrams for Hex and Oct Constants

hex_const = 0 (x | X) dhex+(qualifier | ε)
oct_const = 0 doct+(qualifier | ε)
qualifier = u | U | l | L
dhex = [0-9A-F]
doct = [0-7]
case 6: c = nextchar(); if (digithex(c))
 state = 6; else if ((c == 'u')||
 (c == 'U')|| (c == 'l')||
 (c == 'L')) state = 8;
else state = 7; break;

 case 7: retract(1);
 /* fall through to case 8, to save coding */
 case 8: mytoken.token = INT_CONST;
 mytoken.value = eval_hex_num();
 return(mytoken);
 case 9: c = nextchar(); if (digitoct(c))
 state = 9; else if ((c == 'u')||
 (c == 'U')|| (c == 'l')|| (c == 'L'))
 state = 11; else state = 10; break;
case 10: retract(1);
 /* fall through to case 11, to save coding */
 case 11: mytoken.token = INT_CONST;
 mytoken.value = eval_oct_num();
 return(mytoken);
Transition Diagrams for Integer Constants

\[
\text{int_const} = \text{digit}^+ (\text{qualifier} \mid \varepsilon)
\]

\[\begin{align*}
\text{qualifier} &= u \mid U \mid l \mid L \\
\text{digit} &= [0-9]
\end{align*}\]
/* recognize integer constants */
case 12: c = nextchar(); if (digit(c))
 state = 13; else state = failure();
case 13: c = nextchar(); if (digit(c))
 state = 13; else if ((c == 'u')||
 (c == 'U')|| (c == 'l')|| (c == 'L'))
 state = 15; else state = 14; break;
 case 14: retract(1);
/* fall through to case 15, to save coding */
case 15: mytoken.token = INT_CONST;
 mytoken.value = eval_int_num();
 return(mytoken);
 default: recover();
}