Global Register Allocation - 2

Y N Srikant
Computer Science and Automation
Indian Institute of Science
Bangalore 560012

NPTEL Course on Principles of Compiler Design
Outline

- Issues in Global Register Allocation (in part 1)
- The Problem (in part 1)
- Register Allocation based in Usage Counts
- Linear Scan Register allocation
- Chaitin’s graph colouring based algorithm
The Problem

- Global Register Allocation assumes that allocation is done beyond basic blocks and usually at function level.
- Decision problem related to register allocation:
 - Given an intermediate language program represented as a control flow graph and a number k, is there an assignment of registers to program variables such that no conflicting variables are assigned the same register, no extra loads or stores are introduced, and at most k registers are used.
- This problem has been shown to be NP-hard (Sethi 1970).
- Graph colouring is the most popular heuristic used.
- However, there are simpler algorithms as well.
Conflicting variables

- Two variables interfere or conflict if their live ranges intersect
 - A variable is live at a point \(p \) in the flow graph, if there is a use of that variable in the path from \(p \) to the end of the flow graph
 - The live range of a variable is the smallest set of program points at which it is live.
 - Typically, instruction no. in the basic block along with the basic block no. is the representation for a point.
Example

If (cond) A not live
 then A =
 else B =
X: if (cond) B not live
 then = A
 else = B

A and B both live

Live range of A: B2, B4 B5
Live range of B: B3, B4, B6
Global Register Allocation via Usage Counts (for Single Loops)

- Allocate registers for variables used within loops
- Requires information about liveness of variables at the entry and exit of each basic block (BB) of a loop
- Once a variable is computed into a register, it stays in that register until the end of the BB (subject to existence of next-uses)
- Load/Store instructions cost 2 units (because they occupy two words)
Global Register Allocation via Usage Counts (for Single Loops)

1. For every usage of a variable v in a BB, until it is first defined, do:
 - $\text{savings}(v) = \text{savings}(v) + 1$
 - after v is defined, it stays in the register any way, and all further references are to that register

2. For every variable v computed in a BB, if it is live on exit from the BB,
 - count a savings of 2, since it is not necessary to store it at the end of the BB
Global Register Allocation via Usage Counts (for Single Loops)

- Total savings per variable v are

$$\sum_{B \in \text{Loop}} (\text{savings}(v, B) + 2 \times \text{liveandcomputed}(v, B))$$

- $\text{liveandcomputed}(v, B)$ in the second term is 1 or 0

- On entry to (exit from) the loop, we load (store) a variable live on entry (exit), and lose 2 units for each

- But, these are “one time” costs and are neglected

- Variables, whose savings are the highest will reside in registers
Global Register Allocation via Usage Counts (for Single Loops)

Savings for the variables

<table>
<thead>
<tr>
<th></th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
<th>B4</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>(0+2)+(1+0)+(1+0)+(0+0) = 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>(3+0)+(0+0)+(0+0)+(0+2) = 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>(1+0)+(1+0)+(0+0)+(1+0) = 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>(0+2)+(1+0)+(0+0)+(1+0) = 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>(0+2)+(0+0)+(1+0)+(0+0) = 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>(1+0)+(1+0)+(0+2)+(0+0) = 4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If there are 3 registers, they will be allocated to the variables, a, b, and d

\[a = b \times c \]
\[d = b - a \]
\[e = b / f \]

b
\[e = a - f \]
\[e = d + c \]
\[f = e \times a \]
\[b = c - d \]
Global Register Allocation via Usage Counts (for Nested Loops)

- We first assign registers for inner loops and then consider outer loops. Let \(L_1 \) nest \(L_2 \)

- For variables assigned registers in \(L_2 \), but not in \(L_1 \)
 - load these variables on entry to \(L_2 \) and store them on exit from \(L_2 \)

- For variables assigned registers in \(L_1 \), but not in \(L_2 \)
 - store these variables on entry to \(L_2 \) and load them on exit from \(L_2 \)

- All costs are calculated keeping the above rules
Global Register Allocation via Usage Counts (for Nested Loops)

- **case 1:** variables x, y, z assigned registers in L2, but not in L1
 - Load x, y, z on entry to L2
 - Store x, y, z on exit from L2

- **case 2:** variables a, b, c assigned registers in L1, but not in L2
 - Store a, b, c on entry to L2
 - Load a, b, c on exit from L2

- **case 3:** variables p, q assigned registers in both L1 and L2
 - No special action
A Fast Register Allocation Scheme

- Linear scan register allocation (Poletto and Sarkar 1999) uses the notion of a live interval rather than a live range.
- Is relevant for applications where compile time is important, such as in dynamic compilation and in just-in-time compilers.
- Other register allocation schemes based on graph colouring are slow and are not suitable for JIT and dynamic compilers.
Linear Scan Register Allocation

- Assume that there is some numbering of the instructions in the intermediate form.
- An interval $[i,j]$ is a live interval for variable v if there is no instruction with number $j' > j$ such that v is live at j' and no instruction with number $i' < i$ such that v is live at i.
- This is a conservative approximation of live ranges: there may be subranges of $[i,j]$ in which v is not live but these are ignored.
Live Interval Example

v live

sequentially numbered instructions

v live

i': ...

i: ...

j: ...

j': ...

v live

i' does not exist

i – j: live interval for variable v

j' does not exist
Example

If (cond)
then A=
else B=

X: if (cond)
then =A
else = B

A NOT LIVE HERE

LIVE INTERVAL FOR A

If (cond)
A=

If (cond)
B=

If (cond)
= A

= B

T

F
Live Intervals

- Given an order for pseudo-instructions and live variable information, live intervals can be computed easily with one pass through the intermediate representation.
- Interference among live intervals is assumed if they overlap.
- Number of overlapping intervals changes only at start and end points of an interval.
The Data Structures

- Live intervals are stored in the sorted order of increasing start point.
- At each point of the program, the algorithm maintains a list (active list) of live intervals that overlap the current point and that have been placed in registers.
- active list is kept in the sorted order of increasing end point.
Example

Active lists (in order of increasing end pt)

Active(A) = {i1}
Active(B) = {i1, i5}
Active(C) = {i8, i5}
Active(D) = {i7, i4, i11}

Sorted order of intervals (according to start point):
i1, i5, i8, i2, i9, i6, i3, i10, i7, i4, i11

Three registers are enough for computation without spills
The Algorithm (1)

\[
\begin{align*}
\{ \text{active} & := []; \\
\text{for each live interval } i, \text{ in order of increasing start point } & \text{ do} \\
\{ \text{ExpireOldIntervals}(i); \\
\text{if length(active) } &= \text{ R then SpillAtInterval}(i); \\
\text{else } &\{ \text{register}[i] := \text{a register removed from the pool of free registers;} \\
\text{add } i \text{ to active, sorted by increasing end point} \\
\} \\
\} \\
\}
\end{align*}
\]
The Algorithm (2)

ExpireOldIntervals (i)
{
 for each interval j in active, in order of increasing end point do
 if endpoint[j] > startpoint[i] then continue
 else
 remove j from active;
 add register[j] to pool of free registers;
 }
}
The Algorithm (3)

SpillAtInterval (i)
{ spill := last interval in active; /* last ending interval */
 if endpoint [spill] ≥ endpoint [i] then
 { register [i] := register [spill];
 location [spill] := new stack location;
 remove spill from active;
 add i to active, sorted by increasing end point;
 }
 else location [i] := new stack location;
}
Active lists (in order of increasing end pt)

Active(A) = \{i1\}
Active(B) = \{i1, i5\}
Active(C) = \{i8, i5\}
Active(D) = \{i7, i4, i11\}

Sorted order of intervals (according to start point):
i1, i5, i8, i2, i9, i6, i3, i10, i7, i4, i11

Three registers are enough for computation without spills
Example 2

1,2: give A,B register
3: Spill C since endpoint[C] > endpoint [B]
4: A expires, give D register
5: B expires, E gets register

2 registers available
Example 3

1,2 : give A,B register
3: Spill B since endpoint[B] > endpoint [C]
give register to C

4: A expires, give D register
5: C expires, E gets register
Complexity of the Linear Scan Algorithm

- If V is the number of live intervals and R the number of available physical registers, then if a balanced binary tree is used for storing the active intervals, complexity is $O(V \log R)$.
 - Active list can be at most ‘R’ long
 - Insertion and deletion are the important operations

- Empirical results reported in literature indicate that linear scan is significantly faster than graph colouring algorithms and code emitted is at most 10% slower than that generated by an aggressive graph colouring algorithm.
Chaitin’s Formulation of the Register Allocation Problem

- A graph colouring formulation on the interference graph
- Nodes in the graph represent either live ranges of variables or entities called webs
- An edge connects two live ranges that interfere or conflict with one another
- Usually both adjacency matrix and adjacency lists are used to represent the graph.
Chaitin’s Formulation of the Register Allocation Problem

- Assign colours to the nodes such that two nodes connected by an edge are not assigned the same colour
 - The number of colours available is the number of registers available on the machine
 - A k-colouring of the interference graph is mapped onto an allocation with k registers
Example

- Two colourable
- Three colourable
Idea behind Chaitin’s Algorithm

- Choose an arbitrary node of degree less than k and put it on the stack
- Remove that vertex and all its edges from the graph
 - This may decrease the degree of some other nodes and cause some more nodes to have degree less than k
- At some point, if all vertices have degree greater than or equal to k, some node has to be spilled
- If no vertex needs to be spilled, successively pop vertices off stack and colour them in a colour not used by neighbours (reuse colours as far as possible)