Assignment 4

The deadline for submitting the assignment has passed. As per our record, you have not submitted this assignment.

1. What is the co-sinusoidal phase difference between the 11 elements of a linear array with spacing of $0.5 \lambda_0$ for covering the beams at an angle of 30° from the broadside.
 - 60°
 - 90°
 - 180°
 - 270°

 The answer is incorrect.

 Corrected Answer: 270°

2. An antenna array is required to scan up to an angle 5° to 60° measured from the broadside. To avoid grating lobes, the maximum allowed separation is

 a) $0.7\lambda_0$
 b) $0.8\lambda_0$
 c) $0.9\lambda_0$
 d) $1.0\lambda_0$

 The answer is incorrect.

 Corrected Answer: $0.7\lambda_0$

3. Complete the following: 2 points
 - $\text{Gain of the array in dB}$
 - $\text{Gain of the antenna}$

 Corrected Answer: 10 dB

4. Determine the directive gain of an array of 10 elements.

 a) 5.7 dB
 b) 6.2 dB
 c) 6.7 dB
 d) 7.2 dB

 The answer is incorrect.

 Corrected Answer: 6.2 dB

5. Approximate direction of first null from broadside is

 a) 15°
 b) 18°
 c) 30°
 d) 45°

 The answer is incorrect.

 Corrected Answer: 30°

6. The distance of the side lobe level from broadside is

 a) 10°
 b) 30°
 c) 45°
 d) 60°

 The answer is incorrect.

 Corrected Answer: 45°

7. Approximate magnitude of first side lobe level in dB is

 a) -10°
 b) -12°
 c) -14°
 d) -16°

 The answer is incorrect.

 Corrected Answer: -12°

8. A rectangular planar antenna array of isotropic elements has 10 elements in a direction with inter-element spacing of $0.5\lambda_0$ and 8 elements in a direction with inter-element spacing of $0.7\lambda_0$, respectively. The two elements are fed with equal amplitude and phase. Approximate gain of the array in dB is

 a) -14°
 b) 16°
 c) 20°
 d) 24°

 The answer is incorrect.

 Corrected Answer: 16°

9. Complete the following: 2 points

 - $\text{Gain of the array in dB}$
 - $\text{Gain of the antenna}$

 Corrected Answer: 10 dB

10. Approximate gain of the array in dB is

 a) 10°
 b) 12°
 c) 14°
 d) 16°

 The answer is incorrect.

 Corrected Answer: 12°