COMPUTATIONAL CONTINUUM MECHANICS

PROF. SACHIN SINGH GAUTAM
Department of Mechanical Engineering
IIT Guwahati

TYPE OF COURSE: New | Elective | PG
COURSE DURATION: 12 weeks (20 Jul' 20 - 9 Oct' 20)
EXAM DATE: 17 Oct 2020

PRE-REQUISITES: Introduction to Solid Mechanics I and II, A undergraduate course in Engineering Mathematics. Exposure to undergraduate course on numerical methods will be an added advantage.

INTENDED AUDIENCE: Masters student and research scholars

INDUSTRIES APPLICABLE TO: VSSC, ISRO, Siemens India Limited, Ansys India or any firm involved in R&D involving finite element analysis

COURSE OUTLINE:
Continuum mechanics as a full-fledged course is a very interesting but a challenging subject. Usually, its application within the nonlinear finite element codes is not clear to the student. Computational continuum mechanics tries to bridge this gap. Hence, it can be treated as an applied version of continuum mechanics course. It assumes no prior exposure to continuum mechanics. The course starts with sufficient introduction to tensors, kinematics, and kinetics. Then, the course applies these concepts to set up the constitutive relations for nonlinear finite element analysis of a simple hyperelastic material. This is followed by the linearization of the weak form of the equilibrium equations followed by discretization to obtain the finite element equations, in particular, the tangent matrices and residual vectors is discussed. Finally, the Newton-Raphson solution procedure is discussed along with line search and arc length methods to enhance the solution procedure.

ABOUT INSTRUCTOR:
Prof. Sachin Singh Gautam is currently an Assistant professor in the Department of Mechanical Engineering, IIT Guwahati. He obtained his M.Tech. and Ph.D. from and worked as a postdoctoral fellow in AICES, RWTH Aachen University. His area of research are in nonlinear finite element methods and computational contact-impact problems. He has carried out projects from SERB, DST and VSSC, ISRO. He currently working on incorporation of contact module in the ISRO's structural analysis software tool FEASTSMT (India's first commercial FE package which is under Make-In-India). He has guided students on research problems jointly with Siemens R&D and Cummins R&D. He is currently guiding five full time phd students, two part time students (from VSSC, ISRO and Cummins R&D Centre Pune). He has around 19 M.Tech students. His research group has received various awards and fellowships like DAAD fellowship. He has 2 book chapters, 14 journal papers, and over 50 conference publications.

COURSE PLAN:
Week 1: Introduction - origins of nonlinearity
Week 2: Mathematical Preliminaries -1: Tensors and tensor algebra
Week 3: Mathematical Preliminaries -2: Linearization and directional derivative, Tensor analysis
Week 4: Kinematics - 1: Deformation gradient, Polar decomposition, Area and volume change
Week 5: Kinematics - 2: Linearized kinematics, Material time derivative, Rate of deformation and spin tensor
Week 6: Kinetics - 1: Cauchy stress tensor, Equilibrium equations, Principle of virtual work
Week 7: Kinetics - 2: Work conjugacy, Different stress tensors, Stress rates
Week 8: Hyperelasticity - 1: Lagrangian and Eulerian elasticity tensor
Week 9: Hyperelasticity - 2: Isotropic hyperelasticity, Compressible Neo-Hookean material
Week 10: Linearization: Lineation of internal virtual work, Linearization of external virtual work
Week 11: Discretization: Discretization of Linearized equilibrium equations - material and geometric tangent matrices
Week 12: Solution Procedure: Newton-Raphson procedure, Line search and Arc length method