Advanced Metallurgical Thermodynamics - Video course

COURSE OUTLINE

Basics: First, second and third laws of thermodynamics, Maxwell’s relations, Clausius-Clayperon equation.

Solutions: solution models, regular, sub-regular, cluster variation models, multi-parameter models, quasi-chemical theory, statistical thermodynamics, multicomponent systems.

Equilibrium Concepts: Unary, binary and multicomponent systems, phase equilibria, evolution of phase diagrams, metastable phase diagrams, calculation of phase diagrams, thermodynamics of defects.

Thermodynamics of Phase Transformations: Melting and solidification, precipitation, eutectoid, massive, spinodal, martensitic, order disorder transformations and glass transition. First and second order transitions.

Heterogeneous Systems: Equilibrium constant, Ellingham diagrams and their application to commercially important reactions.

COURSE DETAIL

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Topic</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Basics: First, second and third laws of thermodynamics, free energy, Maxwell’s relations, Clausius Clayperon equation, stability.</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>Solutions: Chemical potential, solution models, quasichemical theory, configurational entropy.</td>
<td>6</td>
</tr>
<tr>
<td>3.</td>
<td>Equilibrium Concepts: Unary, binary and multicomponent systems, Phase equilibria, Phase rule, evolution of phase diagrams, metastable phase diagrams, calculation of phase diagrams.</td>
<td>10</td>
</tr>
<tr>
<td>4.</td>
<td>Thermodynamics of Phase Transformations: Melting and solidification, precipitation, eutectoid, massive, spinodal, martensitic and order disorder transformations. First and second order transitions.</td>
<td>12</td>
</tr>
<tr>
<td>5.</td>
<td>Heterogeneous Systems: Equilibrium constant, Ellingham diagrams and their application to commercially important reactions.</td>
<td>8</td>
</tr>
</tbody>
</table>

Pre-requisites:
Basic course on Metallurgical Thermodynamics

Additional Reading:

Hyperlinks:
3. materials.iisc.ernet.in/~abinand/courses/thermo

Coordinators:
Prof. B.S. Murty
Department of Metallurgical & Materials Engineering, IIT Madras
<table>
<thead>
<tr>
<th>application to commercially important reactions.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>40</td>
</tr>
</tbody>
</table>

References:

1. Physical Chemistry of Metals: L.S. Darken and R.W. Gurry
2. Thermodynamics of Solids: R.A. Swalin