In this lecture...

• Turbine Blade Cooling
 • Blade cooling requirements
 • Fundamentals of heat transfer
Turbine blade cooling

• For a given pressure ratio and adiabatic efficiency, the turbine work per unit mass is proportional to the inlet stagnation temperature.

• Therefore, typically a 1% increase in the turbine inlet temperature can cause 2-3% increase in the engine output.

• Therefore there are elaborate methods used for cooling the turbine nozzle and rotor blades.

• Turbine blades with cooling can withstand temperatures higher than that permissible by the blade materials.
Turbine blade cooling

• Thrust of a jet engine is a direct function of the turbine inlet temperature.
• Brayton cycle analysis, effect of maximum cycle temperature on work output and efficiency.
• Materials that are presently available cannot withstand a temperature in excess of 1300 K.
• However, the turbine inlet temperature can be raised to temperatures higher than this by employing blade cooling techniques.
• Associated with the gain in performance is the mechanical, aerodynamic and thermodynamic complexities involved in design and analysis of these cooling techniques.
Turbine blade cooling

- The environment in which the nozzles and rotors operate are very extreme.
- In addition to high temperatures, turbine stages are also subjected to significant variations in temperature.
- The flow is unsteady and highly turbulent resulting in random fluctuations in temperatures.
- The nozzle is subjected to the most severe operating conditions.
Turbine blade cooling

- Because the relative Mach number that the rotor experiences, it perceives lower stagnation temperatures (about 200-300 K) than the nozzle.
- However the rotor experience far more stresses due to the high rotational speeds.
- The highest temperatures are felt primarily by the first stage.
- Cooling problems are less complicated in later stages of the turbine.
Turbine blade cooling

• There are several modes of failure of a turbine blade.
 • Oxidation/erosion/corrosion
 • Occurs due to chemical and particulate attack from the hot gases.
 • Creep
 • Occurs as a result of prolonged exposure to high temperatures.
 • Thermal fatigue
 • As a result of repeated cycling through high thermal stresses.
Turbine blade cooling

Average temperature profile entering a turbine stage
Fundamentals of heat transfer

- Turbine blade cooling involves application of concepts of heat transfer.
- Heat transfer is a well established area and substantial knowledge base is available in the form of books, journals and other forms of literature.
- We shall take a brief overview of the concepts of heat transfer that are required for understanding of the problems involved in turbine blade cooling.
Fundamentals of heat transfer

• There are three modes of heat transfer
 • Conduction
 • Convection
 • Radiation

• Conduction
 • Heat transfer between two bodies or two parts of the same body through molecules which are more or less stationary.
 • In liquids and gases, conduction results from transport of energy by molecular motion near the walls and in solids it takes place by a combination of lattice vibration and electron transport.
Fundamentals of heat transfer

• Conduction involves energy transfer at a molecular level with no movement of macroscopic portions of matter relative to one another.

• Convection
 • Involves mass movement of fluids
 • When temperature difference produces a density difference – leads to mass movement – Free convection
 • Caused by external devices like a pump, blower etc. Forced convection
Fundamentals of heat transfer

• Radiation
 • Energy transfer taking place through electromagnetic waves
 • Radiation does not require a medium
• For the temperatures that are encountered in a turbine, conduction and convection are the major modes of heat transfer.
• Radiative heat transfer is usually negligible and is normally not considered in turbine heat transfer analysis.
Fundamentals of heat transfer

- Heat transfer by conduction
 - The rate of heat transfer by conduction can be written as (Fourier’s conduction law)

\[
\frac{Q}{A} = q = -k \frac{dT}{dy}
\]

Where, \(Q / A \) is the rate of heat transfer per unit area of the surface, and \(dT / dy \) is the temperature gradient. \(k \) is the thermal conductivity defined as the amount of heat conducted per unit time per unit area per unit negative temperature gradient.
Fundamentals of heat transfer

The generalized governing equation is a three dimensional Poisson equation

\[
\frac{k}{\rho c_p} \nabla^2 T = \frac{\partial T}{\partial t}
\]

This is known as the Fourier equation. The parameter \(\frac{k}{\rho c_p} \) is called thermal diffusivity and is a property of the conducting material.

Simplified forms of this equation has been used extensively over the years by several researchers.
Fundamentals of heat transfer

- Heat transfer by convection
 - Unlike in a solid, heat transfer in a fluid can take place through conduction as well as convection.
 - In general, the temperature and velocity fields are coupled and have strong influence on each other.
 - In modern day turbines, velocity as well as temperature gradients are high.
 - Forced convection is the dominant phenomena in turbine flows.
Fundamentals of heat transfer

• In a typical turbine blade, the boundary layer developing on the blade surface and the freestream temperature are of interest.

• The boundary layer that acts as a buffer between the solid blade and the hot freestream, offers resistance to heat transfer.

• Heat transfer occurs in this viscous layer between the blade and the fluid through both conduction and convection.

• The nature of the boundary layer (laminar or turbulent) plays an important role in the heat transfer process.
Fundamentals of heat transfer

Variation of heat transfer around a turbine blade
Fundamentals of heat transfer

- Due to close coupling between fluid mechanics and heat transfer, each of the regions around a blade require special analysis valid for that region.

- The overall heat transfer is related to the temperature difference between the fluid and the solid through the Newton's law of cooling:

\[
q_w(x) = h(x)(T_r - T_w) = k \left(\frac{\partial T}{\partial y} \right)_w
\]

where, \(q_w(x) \) is the heat flux from the fluid to the wall, \(h(x) \) is the heat transfer coefficient.
Fundamentals of heat transfer

• The heat transfer coefficient is non-dimensionalised by the thermal conductivity and characteristic length:

\[\text{Nu}_x = \frac{h(x) L}{k} = \frac{L}{T_e - T_w} \left(\frac{\partial T}{\partial y} \right)_w \]

\[\text{Nu}_x \] is the Nusselt number.

• In addition to Nusselt number there are other important non-dimensional groups namely, Reynolds number (Re), Prandtl number (PR), Eckert’s number (Ec), Grashof number (Gr) Richardson number (Ri) and Stanton number (St).

• All these numbers play a significant role in a transfer analysis depending upon the application.
Laminar boundary layer (forced convection)

Consider an incompressible laminar flow over a flat plate. We can write the transport equation for such a case as:

\[
\frac{\partial (u\phi)}{\partial x} + \frac{\partial (v\phi)}{\partial y} = \alpha \frac{\partial^2 \phi}{\partial y^2}
\]

where, \(\phi = u \) or \(\theta \), \(\alpha = \mu / \rho \) or \(k / \rho c_p \) and \(\theta = (T - T_w) / (T_e - T_w) \)

The boundary conditions being:

\(y = 0, \phi = v = 0 \) and \(y \to \infty, \phi = u = \theta = 1 \)

- The transport equations for velocity and temperature are similar and therefore the coupling is obvious.
Laminar boundary layer (forced convection)

- It can be shown that the heat transfer is related to the Reynolds number and Prandtl number through the Nusselt number.

\[\text{Nu}_x = 0.332 (\text{Re}_x)^{1/2} (\text{PR})^{1/3} = \frac{C_f}{2} (\text{PR})^{1/3} \text{Re}_x \]

- Heat transfer is a function of \((\text{Re}_x)^{1/2}\) and \(\text{PR}^{1/3}\) and \(C_f\).

- A thin boundary layer has a larger heat transfer.

- Therefore maximum heat transfer in a turbine blade occurs near the stagnation point and the leading edge.
Turbulent boundary layer (forced convection)

• The heat transfer due to turbulent fluctuations is written as:

\[
q_t = \rho c_p \overline{v'T'} = -c_p \varepsilon_t \frac{\partial T}{\partial y}
\]

where, \(\varepsilon_t \) is the eddy diffusivity.

• There is a close coupling between the momentum transfer and heat transfer, which in turn translates to coupling between heat flux and shear stress.

• We can therefore define the turbulent Prandtl number as

\[
PR_t = \frac{\mu_t}{\varepsilon_t}
\]
Turbulent boundary layer (forced convection)

Hence the ratio of heat flux and momentum flux is given by

\[
\frac{q_t}{\tau_t} = - \frac{c_p \frac{\partial T}{\partial y}}{PR_t \frac{\partial u}{\partial y}}
\]

The total rate of heat transfer due to both molecular and turbulent motions is

\[
q = q_{\text{molecular}} + q_{\text{turbulent}} = -c_p \left(\frac{\mu}{PR} + \frac{\mu_t}{PR_t} \right) \frac{\partial T}{\partial y}
\]

There is a clear difference between PR and PR_t. The Prandtl number (PR) is a physical property of the fluid, whereas the Turbulent Prandlt number (PR_t) is a property of the flowfield.
Turbulent boundary layer (forced convection)

For a flat plate with a turbulent boundary layer, the following equation is commonly used:

$$\text{Nu}_x = 0.029 (\text{Re}_x)^{4/5} \text{PR}^{1/3}$$

A general equation for both laminar and turbulent flow analysis can be written as

$$\text{Nu}_x = A \text{Re}_x^m \text{PR}^n$$

where, A, m and n are constants for a particular flow. This is called the Nusselt's equation.
Fundamentals of heat transfer

• Based on our discussion on laminar and turbulent flows:
 • Heat transfer is higher for a thin boundary layer than a thick boundary layer as the temperature gradient is higher for a thin boundary layer.
 • Heat transfer for a turbulent boundary layer is higher than a laminar boundary layer.
 • Heat transfer in thin viscous regions like stagnation point or leading edge, is very high. The velocity and temperature gradients are extremely high in these zones.
Turbine blade cooling

• In order to decide the cooling methodology to be used in a turbine blade, a very strong understanding of the heat transfer mechanisms are essential.

• Turbine blade cooling requires significant amount of compressor air (as high as 20%).

• The cooling air also mixes with the turbine flow leading to losses.

• Due to the above, vigorous analysis is carried out to minimize the amount of cooling as well as the negative aerodynamic effects of cooling.
In this lecture...

• Turbine Blade Cooling
 • Blade cooling requirements
 • Fundamentals of heat transfer