Optimal Control, Guidance and Estimation

Lecture – 37

Optimal Control of
Distributed Parameter Systems – I

Prof. Radhakant Padhi
Dept. of Aerospace Engineering
Indian Institute of Science - Bangalore

Distributed Parameter Systems (DPS)

Systems are Governed by a Set of
Partial Differential Equations

Examples:
- Heat Transfer Processes
- Fluid Flows
- Chemical Reactor Processes
- Vibration of Structures (Aeroelastic Problems)
- Ecological Problems
Control of Distributed Parameter Systems

- Design-then-Approximate
- Approximate-then-Design
 - Design without model reduction
 - Design with model reduction

Topics
- LQR
 - Using Finite Difference (through examples)
- Optimal Dynamic Inversion
 - Continuous Actuator
 - Set of Discrete Actuators
- SNAC
 - Using Finite Difference
 - Using Proper Orthogonal Decomposition (POD)
- Examples
Example

Consider the one-dimensional diffusion equation
\[\frac{\partial x(t, y)}{\partial t} = \frac{\partial^2 x(t, y)}{\partial y^2} + u(t, y) \]
with initial condition \(x(t_0 = 0, y) = x_0(y) \),
and \(\frac{\partial x(t, y)}{\partial y} = 0 \) at \(y = 0 \) and \(y = y_f \).

Task: To find control \(u(t, y) \), which minimizes the cost function
\[J = \frac{1}{2} \int_0^{y_f} \int_0^{t_f} \left[q x^2(t, y) + r u^2(t, y) \right] dt \, dy \]
Example: Approximation of System Dynamics

Central difference formula:
\[
\frac{\partial^2(x(t,y))}{\partial y^2} \approx \frac{x_{i+1}(t) - 2x_i(t) + x_{i-1}(t)}{(\Delta y)^2}
\]
where \(x_{i+1}(t) = x(t, y + \Delta y), x_i(t) = x(t, y), x_{i-1}(t) = x(t, y - \Delta y)\)

Notation: \(\frac{\partial x(t,y)}{\partial t} = \dot{x}_i(t)\) where \(i = 1, 2, \ldots, n\)

Then \(\dot{x}_i(t) = \frac{x_{i+1}(t) - 2x_i(t) + x_{i-1}(t)}{(\Delta y)^2} + u_i(t)\)
where \(i = 1, 2, \ldots, n\)
Example:
Approximation of System Dynamics

Boundary conditions [to obtain $x_0(t)$ and $x_{n+1}(t)$]:

$$\frac{x_1(t) - x_0(t)}{(\Delta y)} = 0 \quad \text{for} \quad y = 0 \text{ (backward difference at } y = 1)$$

$$\frac{x_{n+1}(t) - x_n(t)}{(\Delta y)} = 0 \quad \text{for} \quad y = n \text{ (forward difference } y = n)$$

This gives

$$x_0(t) = x_1(t)$$
$$x_{n+1}(t) = x_n(t)$$

Example:
Approximation of System Dynamics

$$\dot{x}_1(t) = \frac{1}{(\Delta y)} \left[x_2(t) - x_1(t) \right] + u_1(t)$$
$$\dot{x}_2(t) = \frac{1}{(\Delta y)} \left[x_3(t) - 2x_2(t) + x_1(t) \right] + u_2(t)$$
$$\dot{x}_3(t) = \frac{1}{(\Delta y)} \left[x_4(t) - 2x_3(t) + x_2(t) \right] + u_3(t)$$
$$\vdots$$
$$\dot{x}_{n-1}(t) = \frac{1}{(\Delta y)} \left[x_n(t) - 2x_{n-1}(t) + x_{n-2}(t) \right] + u_{n-1}(t)$$
$$\dot{x}_n(t) = \frac{1}{(\Delta y)} \left[-x_n(t) + x_{n-1}(t) \right] + u_n(t)$$
Example:
Approximation of System Dynamics

This can be represented as:
\[\dot{X}(t) = AX(t) + BU(t), \quad X(0) = X_0 \]
where,
\[
A = \frac{1}{(\Delta y)^2} \begin{bmatrix}
-1 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\
1 & -2 & 1 & 0 & \cdots & 0 & 0 & 0 \\
0 & 1 & -2 & 1 & \cdots & 0 & 0 & 0 \\
0 & 0 & 1 & -2 & 1 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -2 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1
\end{bmatrix}, \quad B = I_{non}
\]

Example:
Approximation of Cost Function

This can be rewritten as
\[J(t) = \frac{1}{2} \sum_{i=1}^{n-1} \int_0^{t_f} \left[q x_i^2(t) + r u_i^2(t) \right] dt \]

where \(n \) is the last discretized spatial stage.

This can be rewritten as
\[J = \frac{1}{2} \int_0^{t_f} \left[X^T(t)QX(t) + U^T(t)RU(t) \right] dt \]

This is a LQR problem!
Example

Let us consider the following two cases:

Case A: \(t_f = 1.0, \quad y_f = 4.0, \quad B = I, \quad q = r = 1 \)
\[\Delta t = 0.01, \quad \Delta y = 1.0, \quad \alpha = 1 \]
\[
A = \begin{bmatrix}
-1 & 1 & 0 & 0 & 0 \\
1 & -2 & 1 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 \\
0 & 0 & 1 & -2 & 1 \\
0 & 0 & 0 & 1 & -1 \\
\end{bmatrix}, \quad \alpha = 1
\]
\[Q = R = \begin{bmatrix}
\frac{1}{2} & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & \frac{1}{2} \\
\end{bmatrix} \]

Case B: \(t_f = 1.0, \quad \Delta t = 0.01, \quad B = I, \quad q = r = 1 \)
\[y_f = 4.0, \quad \Delta y = 0.5, \quad \alpha = 1 \]
\[
A = 4 \begin{bmatrix}
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & -2 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -2 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -2 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & -2 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 \\
\end{bmatrix}, \quad Q = R = \begin{bmatrix}
\frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} \\
\end{bmatrix} \]
Example

Optimal control history at grid points

Comment:
Same result for 5 and 10 grid points

Reference:

Example

Optimal control history at grid points

Comment:
1 grid point solution is good enough

Reference:
Control of a Class of Distributed Parameter Systems Using Optimal Dynamic Inversion

Prof. Radhakant Padhi
Dept. of Aerospace Engineering
Indian Institute of Science - Bangalore

References

Control of a Class of Distributed Parameter Systems Using Optimal Dynamic Inversion with Continuous Actuator

Prof. Radhakant Padhi
Dept. of Aerospace Engineering
Indian Institute of Science - Bangalore

Motivation

- Distributed Parameter Systems (DPS) are usually Difficult to control

- Existing techniques:
 - Design-Then-Approximate (e.g. Functional analysis approach)
 - Approximate-Then-Design (e.g. Spatial discretization, Galerkin Projection approach, possibly with POD basis functions)

- New Technique:
 - Falls in D-T-A category without math complexity
 - Dynamic inversion + Variational optimization theory
 - Steady-state convergence can be proved
Problem Description

- System Dynamics:
 \[\dot{x} = f(x, x', x'', \ldots) + g(x, x', x'', \ldots)u \]
 (with appropriate boundary conditions)

- Goal:
 \[x(t, y) \to x^*(t, y), \text{ as } t \to \infty \quad \forall \ y \in [0, L] \]

Control Design

- Define error output:
 \[z(t) = \frac{1}{2} \int_{0}^{L} [x(t, y) - x^*(t, y)]^2 \text{dy} \]

- Design a controller such that
 \[\dot{z} + k \ z = 0 \]

- Algebra:
 \[\int_{0}^{L} (x - x^*) g(x, x', x'', \ldots) u \text{dy} = \gamma \]
 \[\gamma = -\int_{0}^{L} (x - x^*) [f(x, x', x'', \ldots) - \dot{x}^*] \text{dy} - \frac{k}{2} \int_{0}^{L} (x - x^*)^2 \text{dy} \]
Control Design

- No unique solution: Many solutions exist (scope for optimization)

- Cost Function:
 \(J = \frac{1}{2} \int_0^L r(y)[u(t, y)]^2 \, dy \)
 (to minimize)

- Augmented Cost Function:
 \[
 \delta \mathcal{J} = \frac{1}{2} \int_0^L r \, dy + \lambda \int_0^L (x - x^*) \, g \, u \, dy - \gamma
 \]

Control Design

- Necessary condition for optimality:
 \[
 \delta \mathcal{J} = 0 \\
 \int_0^L [ru] \, du + \lambda \int_0^L (x - x^*) \, g \, du \, dy + \delta \lambda \int_0^L (x - x^*) \, g \, u \, dy - \gamma = 0 \\
 ru + \lambda (x - x^*) \, g = 0 \\
 \int_0^L (x - x^*) \, g \, u \, dy = \gamma
 \]
Control Design: Convergence

- Steady-state control

\[\dot{x}^* = f^* + g^* u^* \]
\[u^* = (\dot{x}^* - f^*) \div g^* \]

- Claim:

when \(x(t,y) \rightarrow x^*(t,y) \), \(u(t,y) \rightarrow u^*(t,y) \)

i.e. There is no singularity in the control expression

First we notice that at any point \(y \in (0,L) \), the control solution in Eq.(15) leads to:

\[u(y) = \frac{-\left[y(x,y) - x^*(x,y) \right] g(x,y) \left\{ \int f(x,y) - x^*(x,y) \right\} \Phi + \frac{2}{3} \left\{ \left[x(x,y) - x^*(x,y) \right] \Phi \right\} dy}{r(x,y)} \]

We want to analyze this solution for the case when \(x(t,y) \rightarrow x^*(t,y) \) for all \(y \in [0,L] \). Without loss of generality, we analyze the case in the limit when \(x(t,y) \rightarrow x^*(t,y) \), for \(y \in [y, \sigma/2, \ y + \sigma/2] \subseteq [0,L] \), \(\sigma \rightarrow 0 \) and \(x(t,y) = x^*(t,y) \) everywhere else. In such a limiting case, let us denote \(u(t,y) \) as \(\tilde{u}(t,y) \), which is given by:

\[\tilde{u}(t,y) = \frac{-\left[x(t,y) - x^*(t,y) \right] g(t,y) \left\{ \int f(t,y) - x^*(t,y) \right\} \Phi + \frac{2}{3} \left\{ \left[x(t,y) - x^*(t,y) \right] \Phi \right\} dy}{r(t,y)} \]

\[= \frac{-\left[x(t,y) - x^*(t,y) \right] g(t,y) \left\{ \int f(t,y) - x^*(t,y) \right\} \Phi + \frac{2}{3} \left\{ \left[x(t,y) - x^*(t,y) \right] \Phi \right\} dy}{r(t,y)} \]

Moreover, this happens \(\forall y \in (0,L) \). Hence \(u(t,y) \rightarrow u^*(t,y) \) as \(x(t,y) \rightarrow x^*(t,y) \), \(\forall y \in [0,L] \).
Control Design

- Solve for the control variable:

\[
 u = \frac{\gamma (x - x^*) g}{r(y) \int_0^L (x - x^*)^2 g^2 r(y) \ dy} \quad \text{Note: Control Solution is in “Closed Form”}
\]

- Special Case:

\[
 r(y) = c \in \mathbb{R}^+, \quad g(x, x', x'', ...) = \beta \in \mathbb{R}
\]

\[
 u = \frac{\gamma (x - x^*)}{\beta \int_0^L (x - x^*)^2 \ dy}
\]

Control Design: Final Expression

\[
 u^* = \begin{cases}
 -\frac{1}{g} \left[f^* - \dot{x}^*\right], & \text{if } x(t, y) = x^*(t, y) \ \forall y \in [0, L] \\
 \frac{\gamma (x - x^*) g}{r(y) \int_0^L (x - x^*)^2 g^2 r(y) \ dy}, & \text{otherwise}
\end{cases}
\]
A Motivating Problem

- Heat transfer in a fin
- Temperature dynamics

\[\frac{\partial T}{\partial t} = \alpha_l \left(\frac{\partial^2 T}{\partial y^2} \right) + \alpha_i (T - T_a) + \alpha_e (T_e - T_m) + \beta S \]

- Boundary conditions
- Desired temperature profile
 \[T(y) = T_0 + (T_m - T_0) \frac{y}{L} \]
- Control gain
 \[k = 1/\tau, \quad \tau = 30 \text{sec} \]

Numerical Results:
Sinusoidal initial condition

Temperature history Control history
Numerical Results:
Sinusoidal initial condition

Deviated temperature profile history

Comparison of Steady-state control

Numerical Results:
Random initial condition

Temperature history

Control history
Numerical Results:
Random initial condition

Deviated temperature profile history

Comparison of Steady-state control

Control of a Class of Distributed Parameter Systems Using Optimal Dynamic Inversion with a Set of Discrete Actuators

Prof. Radhakant Padhi
Dept. of Aerospace Engineering
Indian Institute of Science - Bangalore
Problem Description

- **System Dynamics:**
 \[\dot{x} = f(x, x', x'', \ldots) + \sum_{a=1}^{M} g(x, x', x'', \ldots) \tilde{u}_a \]

- **Control Structure:**
 - Inside interval \(\tilde{u}_a = const. \)
 - Outside interval \(\tilde{u}_a = 0 \)
 - No overlapping of different controllers
 - No boundary control

- **Goal:**
 \[x(t, y) \to x^*(t, y), \quad \text{as} \quad t \to \infty \quad \text{FOR ALL} \quad y \in [0, L] \]

Control Design

- **Define Output:**
 \[z(t) = \frac{1}{2} \int_0^t [x(t, y) - x^*(t, y)]^2 \, dy \]

- **Design a controller such that**
 \[\ddot{z} + k \, z = 0 \]

- **Algebra:**
 \[\int_0^t (x - x^*) \, g(x, x', x'', \ldots) \, u \, dy = \gamma \]
 \[\gamma \triangleq -\int_0^t (x - x^*) \left[f(x, x', x'', \ldots) - \dot{x}^* \right] dy - \frac{k}{2} \int_0^t (x - x^*)^2 \, dy \]
Control Design....Contd.

- **Constraint Eq.**:
 \[I_1 \bar{u}_1 + \cdots + I_M \bar{u}_M = \gamma \]
 \[I_m = \int_{x_m - \frac{\eta}{2}}^{x_m + \frac{\eta}{2}} (x - x_m^*) \, g \, dy, \quad m = 1, \ldots, M \]

- **Cost Function**:
 \[J = \frac{1}{2} \left(r_1 w_1 \bar{u}_1^2 + \cdots + r_m w_m \bar{u}_m^2 \right) \]
 (minimize)

- **Final Solution**:
 \[\bar{u}_m = \frac{I_m \gamma}{r_m w_m \sum_{m=1}^{M} I_m^2 / (r_m w_m)}, \quad m = 1, \ldots, M \]
 (closed-form expression)

- **Special Case**:
 \[\pi_n = \frac{I_n \gamma}{\|I_n\|}, \quad I \triangleq \begin{bmatrix} I_1 & \cdots & I_m \end{bmatrix}, \quad r_n w_n = \cdots = r_m w_m \]

Control Design....Contd.

- **Singularity Problem**:
 \[\bar{u}_m \to \infty \quad \text{as all} \quad I_1, \ldots, I_M \to 0 \quad \text{and} \quad \gamma \gg 0 \]

- **Revised Goal**:
 \[X \triangleq \begin{bmatrix} x_1, \cdots, x_m \end{bmatrix} \to X^* \triangleq \begin{bmatrix} x_1^*, \cdots, x_m^* \end{bmatrix} \]
 (objective is achieved at the node points only where the controllers are located)
 \[E \triangleq (X - X^*) \to 0 \quad \text{as} \quad t \to \infty \]

- **Design a control s.t.**
 \[\dot{E} + KE = 0, \quad K > 0 \]
Control Design....Contd.

- Gain K chosen as diagonal with: $k_m = (1/\tau_m)$

- m^{th} channel equation: $\dot{e}_m + k_m e_m = 0$

- Finally: $\bar{u}_m = \frac{1}{g_m} \left[\dot{x}_m^* - f_m - k_m (x_m - x_m^*) \right]$

$$x_m \triangleq x(t, y_m) \quad f_m \triangleq f(t, y_m)$$

$$x_m^* \triangleq x^*(t, y_m) \quad g_m \triangleq g(t, y_m)$$

Final control solution (for implementation)

$$\bar{u}_m = \begin{cases} \frac{1}{g_m} \left[\dot{x}_m^* - f_m - k_m (x_m - x_m^*) \right], & \text{if } \| I \|_2 < \text{tol} \\ \frac{I_m \gamma}{r_m W_m \sum_{\tilde{m}} \frac{T_{\tilde{m}}^2}{(r_{\tilde{m}} W_{\tilde{m}})}}, & \text{otherwise} \end{cases}$$
A Motivating Problem

Mathematical model

- Heat transfer in a fin

- Temperature dynamics

\[\frac{\partial T}{\partial t} = \alpha_1 \left(\frac{\partial^2 T}{\partial y^2} \right) + \alpha_2 (T - T_m) + \alpha_3 (T^4 - T_m^4) + \beta \sum_{n=1}^{M} \delta_n \]

- Boundary conditions

\[T_{y=0} = T_m, \quad \frac{\partial T}{\partial y} \bigg|_{y=L} = 0 \]

- Desired temperature profile

\[T^*(y) = T_m + (T_m - T_0) e^{-y} \]

Numerical Results:

Sinusoidal initial condition

Temperature history | Control history

Wavy steady state is because of insufficient number of controllers
Numerical Results:
Sinusoidal initial condition

Temperature history
Control history

Wavy steady state is no more there!

Numerical Results:
Random initial condition

Temperature history
Control history

Similar results have been obtained from numerous random initial conditions!
Conclusions: ODI Approach

- A new technique for nonlinear DPS control:
 - Dynamic inversion (DI) + Optimization theory
 - Largely driven by DI; has some optimization feature too
- Falls in the “design-then-approximate” philosophy without the math complexity
- **Closed form solution: No computational complexity**
- Continuous actuator case: Theoretical elegance
 (Guaranteed convergence to steady-state expression and no singularity problem)
- Discrete actuators case: Practical relevance
- Successfully demonstrated in a challenging problem

Thanks for the Attention....!!