Analysis of Variance and Design of Experiments-I

MODULE - I

LECTURE - 2

SOME RESULTS ON LINEAR ALGEBRA, MATRIX THEORY AND DISTRIBUTIONS

Dr. Shalabh
Department of Mathematics and Statistics
Indian Institute of Technology Kanpur
Quadratic forms

If A is a given matrix of order $m \times n$ and X and Y are two given vectors of order $m \times 1$ and $n \times 1$ respectively, then the quadratic form is given by

$$X'AY = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} x_i y_j,$$

where a_{ij}'s are the nonstochastic elements of A.

If A is square matrix of order m and $X=Y$, then

$$X'AX = a_{11}x_1^2 + \ldots + a_{mm}x_m^2 + (a_{12} + a_{21})x_1x_2 + \ldots + (a_{m-1,m} + a_{m,m-1})x_{m-1}x_m.$$

If A is symmetric also, then

$$X'AX = a_{11}x_1^2 + \ldots + a_{mm}x_m^2 + 2a_{12}x_1x_2 + \ldots + 2a_{m-1,m}x_{m-1}x_m$$

$$= \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}x_i x_j,$$

is called a quadratic form in m variables x_1, x_2, \ldots, x_m or a quadratic form in X.

- To every quadratic form corresponds a symmetric matrix and vice versa.
- The matrix A is called the matrix of quadratic form.
- The quadratic form $X'AX$ and the matrix A of the form is called
 - Positive definite if $X'AX > 0$ for all $x \neq 0$.
 - Positive semi definite if $X'AX \geq 0$ for all $x \neq 0$.
 - Negative definite if $X'AX < 0$ for all $x \neq 0$.
 - Negative semi definite if $X'AX \leq 0$ for all $x \neq 0$.
• If A is positive semi definite matrix then $a_{ii} \geq 0$ and if $a_{ii} = 0$ then $a_{ij} = 0$ for all j, and $a_{ji} = 0$ for all j.

• If P is any nonsingular matrix and A is any positive definite matrix (or positive semi-definite matrix) then $P^T AP$ is also a positive definite matrix (or positive semi-definite matrix).

• A matrix A is positive definite if and only if there exists a non-singular matrix P such that $A = P^T P$.

• A positive definite matrix is a nonsingular matrix.

• If A is $m \times n$ matrix and $\text{rank}(A) = m < n$ then AA^T is positive definite and A^TA is positive semidefinite.

• If A $m \times n$ matrix and $\text{rank}(A) = k < m < n$, then both A^TA and AA^T are positive semidefinite.
Simultaneous linear equations

The set of \(m \) linear equations in \(n \) unknowns \(x_1, x_2, \ldots, x_n \) and scalars \(a_{ij} \) and \(b_j \), \(i = 1, 2, \ldots, m, j = 1, 2, \ldots, n \) of the form

\[
\begin{align*}
 a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n &= b_1 \\
 a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n &= b_2 \\
 &\vdots \\
 a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n &= b_m
\end{align*}
\]

can be formulated as

\[
AX = b
\]

where \(A \) is a real matrix of known scalars of order \(m \times n \) called as coefficient matrix, \(X \) is real vector and \(b \) is \(n \times 1 \) real vector of known scalars given by

\[
A = \begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix},
\]

is an \(m \times n \) real matrix called as coefficient matrix,

\[
X = \begin{pmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{pmatrix},
\]

is an \(n \times 1 \) vector of variables and

\[
b = \begin{pmatrix}
 b_1 \\
 b_2 \\
 \vdots \\
 b_m
\end{pmatrix},
\]

is an \(m \times 1 \) real vector.
• If A is an $n \times n$ nonsingular matrix, then $AX = b$ has a unique solution.

• Let $B = [A, b]$ is an augmented matrix. A solution to $AX = b$ exist if and only if $\text{rank}(A) = \text{rank}(B)$.

• If A is an $m \times n$ matrix of rank m, then $AX = b$ has a solution.

• Linear homogeneous system $AX = 0$ has a solution other than $X = 0$ if and only if $\text{rank}(A) < n$.

• If $AX = b$ is consistent then $AX = b$ has a unique solution if and only if $\text{rank}(A) = n$.

• If a_{ii} is the i^{th} diagonal element of an orthogonal matrix, then $-1 \leq a_{ii} \leq 1$.

• Let the $n \times n$ matrix be partitioned as $A = [a_1, a_2, \ldots, a_n]$ where a_i is an $n \times 1$ vector of the elements of i^{th} column of A.

 A necessary and sufficient condition that A is an orthogonal matrix is given by the following:

 (i) $a_i' a_i = 1$ for $i = 1, 2, \ldots, n$

 (ii) $a_i' a_j = 0$ for $i \neq j = 1, 2, \ldots, n$.

Orthogonal matrix

A square matrix A is called an orthogonal matrix if $A' A = AA' = I$ or equivalently if $A^{-1} = A'$.

• An orthogonal matrix is non-singular.

• If A is orthogonal, then AA' is also orthogonal.

• If A is an $n \times n$ matrix and let P is an $n \times n$ orthogonal matrix, then the determinants of A and $P'AP$ are the same.
Random vectors

Let $Y_1, Y_2, ..., Y_n$ be n random variables then $Y = (Y_1, Y_2, ..., Y_n)'$ is called a random vector.

- The mean vector of Y is
 $$E(Y) = ((E(Y_1), E(Y_2), ..., E(Y_n))'.$$

- The covariance matrix or dispersion matrix of Y is
 $$Var(Y) = \begin{pmatrix}
 Var(Y_1) & Cov(Y_1, Y_2) & ... & Cov(Y_1, Y_n) \\
 Cov(Y_2, Y_1) & Var(Y_2) & ... & Cov(Y_2, Y_n) \\
 \vdots & \vdots & \ddots & \vdots \\
 Cov(Y_n, Y_1) & Cov(Y_n, Y_2) & ... & Var(Y_n)
 \end{pmatrix}$$
 which is a symmetric matrix.

- If $Y_1, Y_2, ..., Y_n$ are pair-wise uncorrelated, then the covariance matrix is a diagonal matrix.

- If $Var(Y_i) = \sigma^2$ for all $i = 1, 2, ..., n$ then $Var(Y) = \sigma^2 I_n$.
Linear function of random variable

If \(Y_1, Y_2, ..., Y_n \) are \(n \) random variables and \(k_1, k_2, ..., k_n \) are scalars, then \(\sum_{i=1}^{n} k_iY_i \) is called a linear function of random variables \(Y_1, Y_2, ..., Y_n \).

If \(Y = (Y_1, Y_2, ..., Y_n)' \), \(K = (k_1, k_2, ..., k_n)' \) then \(K'Y = \sum_{i=1}^{n} k_iY_i \),

- the mean \(K'Y \) is \(E(K'Y) = K'E(Y) = \sum_{i=1}^{n} k_iE(Y_i) \) and
- the variance of \(K'Y \) is \(Var(K'Y) = K'Var(Y)K \).

Multivariate normal distribution

A random vector \(Y = (Y_1, Y_2, ..., Y_n)' \) has a multivariate normal distribution with mean vector \(\mu = (\mu_1, \mu_2, ..., \mu_n) \) and dispersion matrix \(\Sigma \) if its probability density function is

\[
 f(Y | \mu, \Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp \left[-\frac{1}{2} (Y - \mu)' \Sigma^{-1} (Y - \mu) \right]
\]

assuming \(\Sigma \) is a nonsingular matrix.
Chi-square distribution

- If $Y_1, Y_2, ..., Y_k$ are identically and independently distributed random variables following the normal distribution with common mean 0 and common variance 1, then the distribution of $\sum_{i=1}^{k} Y_i^2$ is called the χ^2-distribution with k degrees of freedom.

- The probability density function of χ^2-distribution with k degrees of freedom is given as

$$f_{\chi^2}(x) = \frac{1}{\Gamma(k/2)2^{k/2}} x^{k-1} \exp \left(-\frac{x}{2} \right); \quad 0 < x < \infty.$$

- If $Y_1, Y_2, ..., Y_k$ are independently distributed following the normal distribution with common means 0 and common variance σ^2, then $\frac{1}{\sigma^2} \sum_{i=1}^{k} Y_i^2$ has χ^2-distribution with k degrees of freedom.

- If the random variables $Y_1, Y_2, ..., Y_k$ are normally distributed with non-null means $\mu_1, \mu_2, ..., \mu_k$ but common variance 1, then the distribution of $\sum_{i=1}^{k} Y_i^2$ has non-central χ^2-distribution with k degrees of freedom and non-centrality parameter $\lambda = \sum_{i=1}^{k} \mu_i^2$.

- If $Y_1, Y_2, ..., Y_k$ are independently distributed following the normal distribution with means $\mu_1, \mu_2, ..., \mu_k$ but common variance σ^2 then $\frac{1}{\sigma^2} \sum_{i=1}^{k} Y_i^2$ has non-central χ^2-distribution with k degrees of freedom and noncentrality parameter $\lambda = \frac{1}{\sigma^2} \sum_{i=1}^{k} \mu_i^2$.
• If U has a Chi-square distribution with k degrees of freedom then $E(U) = k$ and $\text{Var}(U) = 2k$.

• If U has a noncentral Chi-square distribution with k degrees of freedom and noncentrality parameter λ then $E(U) = k + \lambda$ and $\text{Var}(U) = 2k + 4\lambda$.

• If U_1, U_2, \ldots, U_k are independently distributed random variables with each U_i having a noncentral Chi-square distribution with n_i degrees of freedom and noncentrality parameter λ_i, $i = 1, 2, \ldots, k$ then $\sum_{i=1}^{k} U_i$ has noncentral Chi-square distribution with $\sum_{i=1}^{k} n_i$ degrees of freedom and noncentrality parameter $\sum_{i=1}^{k} \lambda_i$.

• Let $X = (X_1, X_2, \ldots, X_n)'$ has a multivariate distribution with mean vector μ and positive definite covariance matrix Σ. Then $X'AX$ is distributed as noncentral χ^2 with k degrees of freedom if and only if ΣA is an idempotent matrix of rank k.

• Let $X = (X_1, X_2, \ldots, X_n)$ has a multivariate normal distribution with mean vector μ and positive definite covariance matrix Σ. Let the two quadratic forms-

$\quad X' A_1 X$ is distributed as χ^2 with n_1 degrees of freedom and noncentrality parameter $\mu' A_1 \mu$ and

$\quad X' A_2 X$ is distributed as χ^2 with n_2 degrees of freedom and noncentrality parameter $\mu' A_2 \mu$.

Then $X' A_1 X$ and $X' A_2 X$ are independently distributed if $A_1 \Sigma A_2 = 0.$
t- distribution

If

- X has a normal distribution with mean 0 and variance 1,
- Y has a χ^2 distribution with n degrees of freedom, and
- X and Y are independent random variables,

then the distribution of the statistic $T = \frac{X}{\sqrt{Y/n}}$ is called the t-distribution with n degrees of freedom.

The probability density function of T is

$$f_T(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)\sqrt{n\pi}} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}}; \quad -\infty < t < \infty.$$

- If the mean of X is non zero then the distribution of $\frac{X}{\sqrt{Y/n}}$ is called the noncentral t-distribution with n degrees of freedom and noncentrality parameter μ.

F-distribution

- If X and Y are independent random variables with χ^2-distribution with m and n degrees of freedom respectively, then the distribution of the statistic $F = \frac{X/m}{Y/n}$ is called the F-distribution with m and n degrees of freedom. The probability density function of F is

$$f_F(f) = \frac{\Gamma\left(\frac{m+n}{2}\right)\left(\frac{m}{n}\right)^{m/2}}{\Gamma\left(\frac{m}{2}\right)\Gamma\left(\frac{n}{2}\right)} f^{\left(\frac{m-2}{2}\right)} \left(1 + \left(\frac{m}{n}\right)f\right)^{-\left(\frac{m+n}{2}\right)}; \quad 0 < f < \infty.$$

- If X has a noncentral Chi-square distribution with m degrees of freedom and noncentrality parameter λ; Y has a χ^2 distribution with n degrees of freedom, and X and Y are independent random variables, then the distribution of $F = \frac{X/m}{Y/n}$ is the noncentral F distribution with m and n degrees of freedom and noncentrality parameter λ.