Self Assessment

1. Process of producing cold or maintaining low temperatures is called as ________.

2. Mathematical representation of 1st Law of thermodynamics is __________.

3. _______ is required to pump the heat from low temperature to high temperature.

4. _____ is the ratio of heat extracted (Q_L) to the work input (W) at a particular temperature.

5. Mathematical representation of COP is _______.

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay
6. COP at 100 K is 0.5. It means that _____W of input power is required to deliver _____ W of cooling power at 100 K.

7. A refrigerator operates in a _____ thermodynamic cycle.

8. A liquefier operates in a _____ thermodynamic cycle.

9. A Joule – Thompson expansion is an __________ expansion.
10. Fill the following table.

<table>
<thead>
<tr>
<th>μ_{JT}</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>>0</td>
<td>______</td>
</tr>
<tr>
<td><0</td>
<td>______</td>
</tr>
<tr>
<td>=0</td>
<td>______</td>
</tr>
</tbody>
</table>

11. ______ does not show any change in temperature when it undergoes J – T expansion.
Answers

1. Refrigeration

2. \(dQ = dU + dW \)

3. work

4. COP

5. \(COP = \frac{Q_L}{W} \)

6. 2 W, 1W

7. closed

8. open
9. Isenthalpic

10. μ_{JT}

<table>
<thead>
<tr>
<th>μ_{JT}</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>>0</td>
<td>Cooling</td>
</tr>
<tr>
<td><0</td>
<td>Heating</td>
</tr>
<tr>
<td>=0</td>
<td>No effect</td>
</tr>
</tbody>
</table>

11. Ideal gas