There are four tutorial problems in the forthcoming slides.

1. Thermal expansion/contraction – 1 tutorial.

2. Estimation of C_v using the Debye Theory – 2 tutorials.

3. Thermal conductivity of materials – 1 tutorial.
Calculate the overlap length of a brazed butt joint formed by SS 304 ($L_0=1\text{m}$) and Copper ($L_0=0.5\text{m}$). It is desired that the minimum overlap should be greater than 5mm. The joint is subjected to a low temperature of 80 K. Use the following data for the calculations.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>SS $\Delta L/L_0 \cdot 10^5$</th>
<th>Copper $\Delta L/L_0 \cdot 10^5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 K</td>
<td>304</td>
<td>337</td>
</tr>
<tr>
<td>80 K</td>
<td>13</td>
<td>26</td>
</tr>
</tbody>
</table>

Overlap $\geq 5\text{mm}$

- This condition should be verified at 80 K.
SS 304
- Mean linear expansion in SS 304 butt

\[
\frac{\Delta L_{SS}}{L_0} = \left(\frac{L_{T1}}{L_0} - \frac{L_{T2}}{L_0} \right) \times 10^{-5}
\]

\[
\frac{\Delta L_{SS}}{L_0} = (304 - 13) \times 10^{-5}
\]

\[L_0 = 1m, \Delta L_{SS} = 2.91mm\]

Cu
- Mean linear expansion in Cu butt

\[
\frac{\Delta L_{Cu}}{L_0} = \left(\frac{L_{T1}}{L_0} - \frac{L_{T2}}{L_0} \right) \times 10^{-5}
\]

\[
\frac{\Delta L_{Cu}}{L_0} = (337 - 26) \times 10^{-5}
\]

\[L_0 = 1m, \Delta L_{Cu} = 3.11mm\]

\[L_0 = 0.5m, \Delta L_{Cu} = 1.55mm\]
Tutorial – 1

- The greater of the two expansions is dL_{SS}
- The safe Butt joint should be more than $dL_{SS} + 5 = 7.91$mm.

Overlap = 8.1mm (say)

- When this joint is cooled to 80 K, the butt width in Cu after shrinkage is 6.55mm. Similarly, the butt width in SS after shrinkage is 5.19mm.

- Hence, the overlap being more than 5mm is a good design.
Debye Theory

- The expression for C_v, given by Debye theory is

\[C_v = 3R \left(\frac{T}{\Theta_D} \right)^3 D \left(\frac{T}{\Theta_D} \right) \]

- Θ_D is called as Debye Characteristic Temperature.

- At $(T > 2\Theta_D)$, C_v approaches $3R$. This is called as Dulong and Petit Value.

- At $(T < \Theta_D/12)$, C_v is given by following equation.

\[C_v = \frac{12\pi^4 R}{5} \left(\frac{T}{\Theta_D} \right)^3 \]

- Also, $D(0)$ is given a constant value of $4\pi^4/5$.
Specific Heat Curve

- The variation of C_v/R with T/θ_D is as shown.
- θ_D for few materials.

<table>
<thead>
<tr>
<th>Material</th>
<th>θ_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>390</td>
</tr>
<tr>
<td>Lead</td>
<td>86</td>
</tr>
<tr>
<td>Nickel</td>
<td>375</td>
</tr>
<tr>
<td>Copper</td>
<td>310</td>
</tr>
<tr>
<td>Silver</td>
<td>220</td>
</tr>
<tr>
<td>α-Iron</td>
<td>430</td>
</tr>
<tr>
<td>Titanium</td>
<td>350</td>
</tr>
</tbody>
</table>
Tutorial – 2

Determine the lattice specific heat of copper at 100 K. Given that the molecular weight is 63.54 g/mol.

• Step 1:
• Calculation of T/θ_D ratio.

\[
T = 100 \text{ K} \\
\theta_D = 310 \text{ K}
\]

\[
\frac{T}{\theta_D} = \frac{100}{310} = 0.3225
\]

• The value of T/θ_D is greater than $1/12$ (0.0833).

<table>
<thead>
<tr>
<th>Material</th>
<th>θ_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>390</td>
</tr>
<tr>
<td>Lead</td>
<td>86</td>
</tr>
<tr>
<td>Nickel</td>
<td>375</td>
</tr>
<tr>
<td>Copper</td>
<td>310</td>
</tr>
<tr>
<td>Silver</td>
<td>220</td>
</tr>
<tr>
<td>Titanium</td>
<td>350</td>
</tr>
</tbody>
</table>
• The value of $T/\theta_D = 0.3225$.

• From the graph, $C_v/R = 1.93$.

\[
R = \frac{8.314}{0.06354} = 130.85
\]

\[
C_v = 130.85 \times 1.93
\]

\[
= 252.534 \text{ J/kg-K}
\]
Tutorial – 3

Determine the lattice specific heat of Aluminum at 25 K. Given that the molecular weight is 27 g/mol.

• Step 1:

• Calculation of T/θ_D ratio.

\[
\frac{T}{\theta_D} = \frac{25}{390} = 0.0641
\]

• The value of T/θ_D is less than $1/12$ (0.0833).

<table>
<thead>
<tr>
<th>Material</th>
<th>θ_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>390</td>
</tr>
<tr>
<td>Lead</td>
<td>86</td>
</tr>
<tr>
<td>Nickel</td>
<td>375</td>
</tr>
<tr>
<td>Copper</td>
<td>310</td>
</tr>
<tr>
<td>Silver</td>
<td>220</td>
</tr>
<tr>
<td>Titanium</td>
<td>350</td>
</tr>
</tbody>
</table>
Tutorial – 3

- Since, the T/θ_D ratio is less than $1/12$, the equation to calculate the specific heat is as given below.

$$c_v = \frac{12\pi^4 R}{5} \left(\frac{T}{\theta_D} \right)^3$$

$$R = \frac{8.31434}{0.0270} = 307.9$$

$$c_v = \frac{233.78RT^3}{\theta_D^3}$$

$$= 18.958 \text{ J/kg-K}$$
Thermal Conductivity Integrals

• The Fourier’s Law of heat conduction is

\[Q = -k(T)A(x) \frac{dT}{dx} \]

• To make calculations less difficult and to account for the variation of \(k \) with temperature, \(Q \) is expressed as

\[Q = -G(\theta_2 - \theta_1) \]

• \(kdT \) is taken as an integral called as Thermal Conductivity Integral evaluated w.r.t a datum.

\[\theta_1 = \int_{T_d}^{T_1} k(T) dT \]

• If \(A_{cs} \) is constant, \(G \) is defined as

\[G = \frac{A_{cs}}{L} \]

For Example

\(T_d = 0 \) or 4.2

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay
Thermal Conductivity Integrals

The variation of kdT for few of the commonly used materials is as shown.

In the calculations, the actual temperature distribution is not required, but only the end point temperatures.

\[
\int_{10}^{100} kdT = \int_{0}^{100} kdT - \int_{0}^{10} kdT
\]
Tutorial – 4

Determine the heat transferred in an copper slab of uniform cross section area 1cm2 and length of 0.1m, when the end faces are maintained at 300 K and 80 K respectively. Compare the heat transferred by k_{avg} and kdT methods.

Given

- Area of cross section : 10^{-4} m2
- Length of specimen: 0.1 m
- $T_1 = 300$ K
- $T_2 = 80$ K
Tutorial – 4

k$_{\text{avg}}$ Method

\[Q = -k_{\text{avg}} A \frac{dT}{dx} \]

\[Q = k_{\text{avg}} A \left(\frac{T_1 - T_2}{L} \right) \]

\[Q = 57.75 \times 10^{-4} \left(\frac{300 - 80}{0.1} \right) \]

\[Q = 18.958 \text{ W} \]

\[k_{300} = 78.5 \text{ W/m K} \]

\[k_{80} = 37.0 \text{ W/m K} \]

\[k_{\text{avg}} = 57.75 \text{ W/m K} \]
kdT Method

\[Q = -G(\theta_2 - \theta_1) \]

\[\theta_1 = \int_{4.2}^{300} k(T) dT = 15000 \]

\[\theta_2 = \int_{4.2}^{80} k(T) dT = 1600 \]

\[Q = -\frac{10^{-4}}{0.1} (1600 - 15000) \]

\[Q = 13.4 \text{ W} \]

Comparison

<table>
<thead>
<tr>
<th>(k_{avg})</th>
<th>kdT</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.98</td>
<td>13.4</td>
</tr>
</tbody>
</table>

- \(K_{avg} \) is more than the kdT method.